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INTRODUCTION

In his research, we have proposed the (64, 40, 8) subcode of the third-order Reed-Muller (RM) code

to NASA for high-speed satellite communications. This RM subcode can be used either alone or as an

inner code of a concatenated coding system with the NASA standard (255,233, 33) Reed-Solomon (RS)

code as the outer code to achieve high performance (or low bit-error rate) with reduced decoding

complexity. It can also be used as a component code in a multilevel bandwidth efficient coded modulation

system to achieve reliable bandwidth efficient data transmission.

This report will summarize the key progress we have made toward achieving our eventual goal of

implementing a decoder system based upon this code.

In the first phase of study, we investigated the complexities of various sectionalized trellis diagrams

for the proposed (64, 40, 8) RM subcode. We found a specific 8-trellis diagram for this code which

requires the least decoding complexity with a high possibility of achieving a decoding speed of 600 M bits

per second (Mbps). The combination of a large number of states and a high data rate will be made possible

due to the utilization of a high degree of parallelism throughout the architecture. This trellis diagram will

be presented and briefly described. In the second phase of study which was carried out through the past

year, we investigated circuit architectures to determine the feasibility of VLSI implementation of a high-

speed Viterbi decoder based on this 8-section trellis diagram. We began to examine specific design and

implementation approaches to implement a fully custom integrated circuit (IC) which will be a key

building block for a decoder system implementation. The key results will be presented in this report.

This report will be divided into three primary sections. First, we will briefly describe the system

block diagram in which the proposed decoder is assumed to be operating and present some of the key

architectural approaches being used to implement the system at high speed. Second, we will describe

details of the 8-trellis diagram we found to best meet the trade-offs between chip and overall system

complexity. The chosen approach implements the trellis for the (64, 40, 8) RM subcode with 32

independent sub-trellises. And third, we will describe results of our feasibility study on the implementation

of such an IC chip in CMOS technology to implement one of these subtrellises.
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1. Background and Implementation Considerations

We will begin this section with a brief discussion of the system block diagram in which the proposed

decoder is assumed to be operating. Next, we will examine advantages of the proposed architectures for

implementation of the Viterbi decoder along with design considerations which result. Following this we

will present the architecture we have chosen for implementation of the decoder system.

System Block Diagram

A simplified block diagram of a receiver in which the proposed decoder may be used is shown in

Fig. 1. The signal enters the receiver via an antenna and is first amplified by a low noise amplifier (LNA)

before being passed to the 2-PSK demodulator. We assume the functions of carrier and timing acquisition

and gain control are properly performed in the demodulator. The output of the demodulator is sampled at

the correct phase at the symbol rate of 960 MHz. The output of the sampler is converted to the digital

domain by the 3-bit analog-to-digital converter (ADC) for decoding by the Viterbi Decoder block which

follows. Our discussion will focus exclusively on the implementation of the Viterbi Decoder.

From

Antenn_ 2-PSKDemodulator o60 
Bits

Viterbi ___utDecoder

Figure 1 Block diagram of a high speed satellite receiver employing 2-PSK signalling and a Viterbi Decoder.

Summary Of System Level Architectttral Considerations

In our earlier report [1 ], we describe in detail the different ways in which parallelism can be utilized

to decode the (64, 40) RM code. We will briefly present a summary of that description in this section.

There are many diverse issues at different levels of the design requiring consideration for

implementation of the (64, 40) RM code at a rate of 600 Mbits/sec. Fig. 2 illustrates the different layers of

hierarchy associated with the proposed implementation. First, there are N parallel decoders with each

operating on a different independent block of 64 symbols. Given a decoder which can decode a 64-symbol

block at a certain rate, using N decoders and having them each operate on a different block of 64 symbols

allows a throughput N times greater.

Second, each decoder is implemented with K parallel isomorphic subtrellises. As described in [6],

the trellis for an RM code can be decomposed into parallel isomorphic subtrellises that are connected at

only the inputs and outputs as shown conceptually in Fig. 2 with K parallel subtrellises. This has a

tremendous advantage for IC implementation because it minimizes the amount of routing required within

the trellis which would otherwise be unrealizable at high speed for applications requiring large numbers of

states. This is the key which makes an implementation using CMOS IC's at such a high rate and

complexity possible.

And third, there are a number of parameters associated with the implementation of each of the K

subtrellises. The first is the number of sections in the subtrenis denoted as L. Next, is the number of states

at the end of each section i (i = 1, 2..... L) denoted as ISil which will generally not be the same. Finally,

there is the radix of each section denoted as R i for radix R in section i. As the number of sections L

decreases, the complexity of each section and the number of parallel branches per section increases. These

trade-offs are discussed in detail in [1].
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Figure 2 Levels of hierarchy in the proposed Viterbi decoder implementation. (a) Parallel Viterbi

decoders operating on different blocks of data. (b) Implementation with K parallel isomorphic
subtrellises. (c) Subtrellis implementation.

2. Architecture Chosen for Implementation

In this section, we will present the architecture we chose (over two other candidates) to investigate

for implementation of the decoder and present some of the approaches we have developed for
implementation of this architecture.

In Fig. 3 is the 8-section trellis which we are investigating for implementation of the decoder. It

illustrates the form of two of the parallel isomorphic subtrellis for this chosen architecture. Atop the trellis

is the number of subtrellises required to implement the decoder. The numbers inside the subtrellises

indicate the number of states in that particular section of the trellis. Below the trellis is the radix at each

stage of the trellis.



TRELLIS 2

Indicates number 32 parallel isomorphic 64-state (maximum) subtrellises
of states at the end
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Figure 3 The 8-section architecture we are investigating for implementation of the 600 Mb/sec Viterbi

decoder for the (64,40,8) RM subcode.

Implementing one of the 32 subtretlises on a single chip at such a high speed will not be trivial and

will require full custom circuit design. From a yield/cost standpoint, the die size of an IC should be kept on
the order of 10 mm on each side (100 mm2). This and other factors were considered in choosing Trellis 2

for further investigation.



The detailed structure of one of the subtrellises for Trellis 2 is shown in Fig. 4. As can be seen in the

figure, the 8-way ACS is a critical building block for implementation of this subtrellis. As described in [1],

the approach we are examining is based upon a customized 8-way ACS block which is used with

comparators to implement the radix-64 section in Section 4 of the subtrellis.

Section: 1 2 3 4 5 6 7 8

Source Destination

No. States: 64 64 64 8 64 64 64 1

RADIX: 8 8 8 64 8 8 8 64

Figure 4 Detailed subtrellis structure for Trellis 2.



3. Chip Plan and Key Results from the Past Year

The key to the implementation of a (64, 40) RM decoder will be the successful implementation of an

IC implementing the subtrellis described in the previous section. In this section, we will present some of

the key results from the feasibility study of the past year in which we examined the issues associated with

such an implementation.

The key objectives of the subtrellis IC implementation are to:

1. Maximize the efficiency as measured by maximizing the utilization of the hardware (in

other words, attempt to minimize the time the majority of the hardware is not being

used).

2. Use a chip plan which minimizes the area used for routing (routing area is simply an

overhead which should be minimized).

3. In whatever the available technology, attempt to approach the speed of 600 Mbits/sec

with the minimum number of parallel decoders (in other words, attempt to attain the

highest possible speed in a given technology subject to the constraints in the next

objective).

4. Consider reliability and robustness issues. In particular, use the lowest speed system

clock possible which allows high speed operation in order to reduce the number of

issues which can limit the performance (which in this case would be clock skew

between chips or race conditions both within and between the different ICs.

5. Consider the board design and the numbers of inputs and outputs to each chip to

facilitate implementation of the final decoder system.

6. Keep the size of the IC on the order of 10 mm per side to facilitate its implementation

and yield for testing.

7. Utilize the most aggressive IC technology available to our design team at the time of

the design.

In this section, we will examine 4 key aspects of the design including the sequence to be used to

decode the 8 sections of the subtrellis, the overall chip plan, and some of the details associated with the

design of the 8-way ACS and the decoder.
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Decoding Seq,ence

Due to the inherent nature of block codes, they can be decoded either sequentially or out of order as

shown in Fig. 6. The arrow in Fig. 6a indicates how a trellis is typically decoded sequentially, starting with

Section 1 and on through to Section 8. In Fig. 6b is another approach where, first, Sections 1 through 4 are

decoded sequentially and path information corresponding to the most likely paths into the center 8 states

which are the destination states in Section 4 are stored. Next, Sections 5 through 8 are decoded starting

from Section 8 and moving back through to Section 5. The path metrics corresponding to the most likely

paths into the 8 destination states at the end of Section 5 (moving right to left) are then added to those

which were found into those states from the first 4 sections. The two paths (entering the center 8 states)

with the largest path metric sum comprise the most likely path through the trellis.

Section: 1 2 3 4 5 6 7 8

Sou rce Destination

Center 8 States

(a) t [_>
Traverse sections sequentially.

co) Q, 1>4
(_ Resolve first 4 sections;

Store largest path metrics into the center 8 states.

(_) Resolve second set of 4 sections (starting from Section 8 through Section 5).

Sum the largest path metrics into the center 8 states from both sides.

Find largest path metric through the subtrellis.

Figure 5 Two possible decode paths for the subtrellis. (a) Traverse all sections sequentially. (b) Traverse in
two sections.

The approach we have adopted is a third approach which we call the modified concurrent bi-

directional execution sequence. This approach exploits the use of pipelining in the ACS implementation

and the mirror symmetry of the subtrellis about the center axis (the 8 center states) and results in potential

advantages in terms of both speed and structural regularity. Sections are decoding starting from Section 1

and then Section 8, Section 2 and then Section 7, and on clown the line until the center is reached and the

entire path is resolved as in approach (b) illustrated in Fig. 5.

Sequence for Decoding time

I seo. l JSec.81Sec. 21Sec. 71 Sec.31Sec. 61Sec. 41Sec. 51Combineand Resolve I

Figure 6 Sequence for decoding using the modified concurrent bi-directional execution sequence.



Chip Plan -o Block Level Overview

An outline of the overall chip plan illustrating the major blocks is shown in Fig. 7a. The Clock

Generation and Control block will generate the necessary clock phases to clock the chip. Input data will

enter the Branch Metric Unit (BMU) which will generate the branch metrics for the Add-Compare-Select

Unit (ACSU). The outputs of the ACS Unit include the winning path metrics and the winning branch

labels. These are input to the Decoder which determines the most likely path through the subtrellis for the

64-symbol block.

Pipelining is used extensively within the BMU, ACSU, and the Decoder. Preliminary circuit design

suggests that to achieve a 600 Mbits/sec decode rate in a 0.6 _tm CMOS process, 2 decoders operating in

an interleaved manner will be required. As a result, each will be required to operate at a 300 Mbits/sec rate.

The symbols will enter the chip at a 300 Mbits/sec x (64/40) = 480 Msymbols/sec rate. The incoming

symbols will be separated into groups of 8 3-bit symbols and enter the chip at a 480 M/8 = 60 MHz rate.

We currently plan to have the input clock to the chip clock at this 60 MHz rate.

A tentative design tbr the BMU employs pipelining and takes 3 cycles of the input clock to generate

the branch metrics for one section of the trellis. This is indicated in the timing diagram in Fig. 7b with a 3

clock cycle delay from the instant that input data is latched to the time at which branch metrics for a

section are output. Each of the stages are shown with the movement of data corresponding to Section 1

indicated with a darkened timing bubble. The outputs of the BMU are input to the ACSU which after 3

cycles of the clock generates outputs for the first section which are passed to the decoder. With each

subsequent clock, the ACSU outputs path metrics and branch labels in the order presented in Fig. 6. After

the outputs for Section 5 are generated, the decoder then has all the information it needs to determine the

most likely path through the subtrellis. Extensive simulations were performed examining different circuit

and architectural approaches for implementation of the ACSU. Since this block is potentially the

bottleneck to high speed performance and will consume the majority of chip area, much time was spent

investigating various permutations of pipelirting ancl parallelism and algorithmic approaches until settling

on one which we believe to best meet the various design considerations.

The final decode function is not a trivial one due to the size and amount of data output from the

ACSU. During its operation, the ACSU finds the most likely paths from the start of the subtrellis to each of

the 8 states at the end of Section 4 and the end of the trellis traversing back through Sections 8-5 to the

same location. The decoder must then combine these most likely paths and determine the most likely path

from the start to the end of the subtrellis. It must do so while keeping track of the winning branch labels of

the partial paths in order to output this information along with the winning path metric to the off-chip post

processing which follows. The off-chip processing then determines the path most likely among the most

likely from each of the 32 subtrellis. The functions which comprise the decode function are also pipelined

although this is not indicated explicitly in the figure.
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Clock Generation
and
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Input
Data Branch Metric

Unit
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Add-Compare-Select

Unit

(ACSU)

Decoder

t
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Output
Data
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processing

_-_ 1_ 16.67 nsec

f Stage 1 • • • _ • • • Number indicates
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Section 1 Input Data Latched Section 1 Outputs Resolved and Latched by Decoder

p Decoder Decodes Outputs.._. Current BlockDecoder from Previous Block -r Processed

(6)

Figure 7 (a) Block diagram of the IC being developed to implement a subtrellis. (b) Basic high level timing
diagram.

Let us now briefly examine some of the details associated with the implementation approaches

developed for implementation of the subtrellis IC. We will focus on our developments for implementation
of the 3 major blocks: BMU, ACSU, and Decoder.

Branch Metric Unit (BMU)

The 64 symbol sequence is broken into 8 sections with 8 symbols per section. Thus, the BMU

generates branch metrics with 8 symbols input at a time. Each input symbol is a 3-bit word and 8 of these

are summed in a variety of ways to generate 64 6-bit sums which are the branch metrics as shown in Fig.

8. These sums are conveniently generated using the pipelined 3-stage approach shown in the figure. The

use of pipelining facilitates the implementation to reduce the speed requirements of any one stage. Thus,
this will be easily implementable at the desired speed.
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• a
Metrics •
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Figure 9 Conceptual layout of the Distributed Branch Metric Unit indicating how Stage 3 of the

pipeline is performed locally near each 8-Way ACS to reduce the number of routing lines.

Recall that there are a total of 8 8-Way ACSs on a subtrellis IC. Each 8-Way ACS requires only 8 of

the 64 total branch metrics. Therefore, instead of generating all 64 on one end of the IC and routing all 64

6-bit branch metrics along the side of the IC for distribution, Stage 3 of the BMU is separated into custom

units which locally generate the 6-bit branch metrics for the ACS units as shown in Fig. 9. This greatly

reduces routing and the parasitic capacitance which would otherwise result on the 64 word lines if all

branch metrics were generated in one location and passed throughout the IC.
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8- Way A CS Unit

The 8-way ACS is the key block for implementation of the sub-trellis decoder. The ACSs will

dominate the chip area and will limit the attainable throughput. Therefore, it must be optimized to trade-

off speed and chip area.

The ACS is comprised of the well-known add-compare-select function as required in a Viterbi

decoder and is shown schematically in Fig. 10 for one section of a radix-8 section. Each of the 8

destination states have a path from each of the 8 source states which makes it an 8-state radix-8 ACS

section. A branch metric corresponding to each path into a destination state is added to the accumulated

path metrics at each of the source states. These sums are then compared, and the largest sum is the winning

path metric for the destination state. This sum is then fed back to become the accumulated path metric for

the corresponding state for the next section of the trellis.

There are two outputs from the ACS units: the winning path metric into each state and the path labels

corresponding to the winning paths.

$1 $1 1

0 _ Path Metric State 1 _-- -"-'1

sO_ / ? Branch Metric1.1 _ --| I

-- / 0 Path Metric State2 _ / I

I / 0 Branch Metric2.1 _ _ _ -_1 -I I

• / o - '--' _.I__! !
• / o : o /o 1 o ..

o . +11
Path Metric State 8

__ Branch Metrice. 1 _ /T ]7-
\ Branch Metrice. 1 with corresponding Branch Labels. 1

Path Metric State 8 (b)
(a)

Figure 10 (a) One section of an 8-Way ACS. From each of the 8 states emanates br,'mcbes to each of

the 8 states which follow. (b) Block diagram of the add, compare, and select functions.

Outputs:

1. Winning
Path Metric

2. Winning
Branch Label
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Each path between states in the trellis thus far has been shown as a single line. In this decoder, each

path is actually comprised of parallel branches. Branch metrics are calculated by adding and subtracting

signed numbers. As a result, the branch metrics can be both positive and negative in value. The branch

metric for each of the parallel branches between two states is calculated using the same equation and the

winning branch is the one with the positive sign. Thus, the winner of the two parallel branches is resolved

simply by taking the absolute value of a branch metric as shown in Fig. 11 and sending one bit signifying

whether or not a sign change was needed to the circuitry which generates the winning branch label.

The approach shown in Fig. 11 is a straight forward implementation of add, compare, and select and

can be mapped directly to hardware. However, it is far from optimum, especially with regard to speed. Let

us now focus on implementation of the ACS function.

$1 $1

• 0

• 0

• 0

Parallel Branches

(a)

Path Metric $1

Branch Metric 1.1 0-_ ABS{o}

Path Metric $2 0 ] [-_-]

Branch Metric2q o_IABS{o } _ ,¢ ] .,_,

Path Metric S8 0 IJ [-'_

Branch Metric8.10-_ABS{o} I-?
v w

Co)

:: 0

Outputs:

1. Winning
Path Metric

2. Winning
Branch Label

3. Sign Bit
of the Winning
Branch Metric

(Distinguish between
parallel branches)

Figure 11 (a) One section of an 8-Way ACS indicating parallel paths. The magnitude of the branch

metrics from the parallel paths is the same but the signs are different. Our implementation always

uses the metric with the positive sign. (b) Block diagam with the absolute value function added

which operates on the branch metric. Information whether or not the sign is changed is used by the

decode circuitry.
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Different methods have been proposed for implementation of the ACS function. The key trade-offs

include speed, silicon area, and required input clock frequency for a given throughput and is a strong

function of the radix of the stage as described in [1 ]. One approach implements this block using word level

pipelining for radix-4 ACS units [3,4]. This method determines the largest of 4 numbers using 6 parallel

comparators followed by some post processing logic. Each of the 6 possible pair combinations are input to

the 6 comparators and the post logic determines the largest of the four. This is attractive for a radix-4

implementation but not for a radix-8 implementation clue to speed and area requirements.

Another approach [2] implements the entire ACS using bit-level pipelining and a contention-based

approach for implementation of the compare-select functions as shown in Fig. 12. In this approach, there

are two paths for the N adder outputs. One is through a block labelled Output Largest Sum which uses a

contention-based approach for determining the largest sum. It begins by comparing all the MSBs in

sequence down to the LSBs. The comparison begins with all N inputs in contention. Losers disqualify

themselves until only one of the N inputs is leR. This output is the largest of the sums and becomes one of

the Npath metrics for the section which follows. The second path is through a circuit which determines the

label associated with the largest sum. This general approach was selected for the prototype

implementation. The approach described in [2] utilizes bit level pipelining. As a result, a relatively high

clock speed is required and there is the need for a large number of pipeline latches. We investigated

pipelining at bit and word levels as well as some combinations of the two, and settled on the approach

which best suits the trade-offs outlined earlier for implementation of the 8-Way ACS.

As described earlier, the clock to the system is a 60 MHz clock. Each of the functions including add,

output largest sum, and determine the winning label requires one clock cycle. Thus, the combination of the

add and output largest sum functions require two clock cycles. This would normally create a recursive

bottleneck because the winning path metrics in a section must be known before computing the following

section. As a result, we developed the concurrent bi-directional approach described earlier where we

resolve sections of the trellis starting at Section 1 then Section 8, followed by Section 2 then Section 7,

etc... Using this approach, while the largest path metrics in Section 1 are being computed for use in the

Section 2 calculations, the adders can be used (due to the use of pipelining) to begin processing Section 8.

PM S1 PM S1 Winning
BMI-1 - BMI-I_ l__Outputl I Metric

-- I/_ Largest

sum.
BM2.1

_,---O . /V Winning Label

_ : _(_] Determine I Iencodel/

SN "_'O--I_ L _ / *.1 Label of I--4 Label I--13PMSNO--_ _LargestSuml I Data I -PM

BMN. 1_ BMN_ 1_ t j t J

-I- -i-
(a) L_ _ _

Figure 12 (a) Conventional ACS block diagram. (b) Block diagram with independent determination of the

largest metric and the corresponding label and the encoding of this label using the contention approach [2].
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Thestructureof oneof the ACS blocks we have developed for implementation of the 8-way ACS is

shown in Fig. 13. The implementation we propose is entirely bit sliced except for the encoder which

determines the winning label. The key difference between the approach we propose and [2] is that latches

are introduced at the outputs of the major blocks so that pipelining occurs at the word level as opposed to

the bit level. While this results in a small reduction in attainable speed, it has two important advantages.

First, is reduced area because of the need for far fewer intermediate latches. This is important due to the

large number of ACSs required on a subtrellis IC. Second, the required clock speed is much lower which

should result in more robust overall implementation.
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Each8-WayACSiscomprisedof 8parallelradix-8sections.Eachof the8 stateshavepathsinto8
destination states. The winning path metrics into the destination states recursively become the starting path

metrics for the section which follows as shown in Fig. 13b. In this way, each of the sections of the trellis is

resolved using the same 8-Way ACS section as described in our earlier report. We refer to a section which

performs the radix-8 operation for a particular state as a state slice. One 8-Way ACS is comprised of 8

parallel states slices as shown schematically in Fig. 13c. The 8 winning path metrics are input to each of

the state slices. Thus, the state slices are laid out in such a way that these winning metrics are passed

through each of the slices for convenient access.

Section N Section N+I

$1 $1 $1

• / ° / °
• / o / o
• / o/ o
/ 2/ oo

$8 $8 $8

(a)

$8 $8
(b)

' State,
J

sl , Slice I

ii/i '
s_S_ \ ',& \ !_'5,\ _R \ _'3,\ .R \ 3, \ \

Winning J i

'"'='""° I I j I I i II I I I I I I I I

OUT1 OUT2 OUT3 OUT4 OUT5 OUT6 OUT7 OUT8

(c)

Figure 13 (a) Cascade of radix-8 sections as present in the subtrellis. (b) Block diagram of a recursive
ACS unit used to resolve each radix-8 section. (c) Conceptual layout of a full 8-Way ACS

indicating the definition of a State Slice which implements one radix-8 section.
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Path Metrics
for States 1 - 8

O'_

Branch Metrics O_
from States 1 - 8
into State N

State Slice

for State N

--O Winning Path Metric

"_O

--'-O
J

Label for the Winning Path Metric

Bit Indicating Which of the
Parallel Paths Was Used

Figure 14 Inputs and outputs of a State Slice for State N.

The inputs and outputs of a state slice are shown in Fig. 14. Information of the winning labels and a

sign bit indicating which of the parallel branches is the winner are output for every section. However, the

accumulated path metrics are only needed after Sections 1 - 4 and Sections 8 - 5 have been resolved. These

are then summed by circuitry which follows to determine the most likely path through a subtrellis.

Each state slice is implemented using a bit-slice architecture as shown conceptually in Fig. 15. Each

slice operates on a different bit location of the input words and implements the entire ACS function for that

particular bit. For example, one slice operates on the MSBs of each of the path metrics and the branch

metrics and outputs the MSB of the winning path metric along with data that is encoded into the winning

path label. Information such as carry bits are passed between the bit-slices as needed. The overall result of

this approach is a very regular and compact layout. A plot of the layout of a bit slice is shown in Fig. 16.

Path Metric MSBs
O-

O-
Branch Metric MSBs

Path Metric LSBs

8
Branch Metric LSBs

Bit Slice 8 (MSB)

8 Parallel 1-bit Adders J-_

-- x--.._x-.-2 I Contention

J Circuitry

_aatches _

I Bit Slice 7

I BitSlice6 1
I' i, •

I BitSlices I
¢ ÷

I Bit Slice 4 I •

¢ +
I Bit Slice 3 I

¢ i,
[ Bit Slice 2 II

'_ _ I LSB of the Winning
I Bit Slice 1 (LSB) I _Path Metric

I _ Data to Determine

MSB of the Winning
Path Metric

Data to Determine
Winning Label

Winning Label

Figure 15 Conceptual block diagram of a State Slice using a bit-slice implementation. In the front-

end, 8 additions are performed in parallel with the MSBs of all 16 words input to Bit Slice 8 and

other bits input similarly in groups to the LSBs to Bit Slice 1.
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Eight of the bit slices of Fig. 16 are stacked to implement a state slice. Eight state slices are placed in

parallel to implement an 8-Way ACS. And finally, eight 8-Way ACSs are stacked in order to implement the

ACS block for one subtrellis IC. The ACS block output feeds the Decoder block which stores the winning

path label information and combines and compares the accumulated path metrics in order to determine the

most likely path through a subtrellis. This information is then output from the IC. The outputs of the ACS

blocks to the Decoder block are shown as they appear in time in Fig. 17.

8 State Slices per 8-Way ACS

8-Way ACS /

I ! I ', ! I ! I

8-Way ACS 2
-T-r-i--j-r-r%-_

_ L_J__,_i_ L_'_ j
8-Way ACS 3

J J I |t i J t
i I t _ 11t . I -- I t

8-Way ACS 8

t J t i I ! t

Decoder

Output:

Largest
8-Bit Path Metric

Corresponding
40-Bit Label

Section 1
Outputs

Winning
Labels

+
Signs of

the Branch
Label

Section 8
Outputs

Winning
Labels

.,t-

Signs of
the Branch

Label

15 nsec _-

Section 2
Outputs
Winning
Labels

+
Signs of

the Branch
Label

Section 7
Outputs

Winning
Labels

+

Signs of
the Branch

Label

Section 3
Outputs
Winning
Labels

+

Signs of
the Branch

Label

Section 6
Outputs

winning
Labels

+

Signs of
the Branch

Label

time

Section 4
Outputs

Winning
Labels

÷

Signs of
the Branch

Label

Accumulated
Branch Metric
Sections 1-4

Section 5
Outputs
Winning
Labels

+

Signs of
the Branch

Label

Accumulated
Branch Metric
Sections 5-8

Figure 17 State slices in parallel make up an 8-Way ACS. Eight 8-Way ACSs are stacked to achieve the

number required for a sub-trellis implementation. The outputs of the ACSs feed the decoder block. The
outputs of the ACSs over a 8 clock sequence _e shown.
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Decoder

The first function required of the decoder block is to de-interleave the data from the ACS blocks for

decoding as shown conceptually in Fig. 18. This is implemented simply as a multiplexor or switch.The

remaining functions are:

1. Complete the radix-64 operations needed to complete Sections 4 and 5.

2. Combine the winning metrics from both directions (Sections 1 - 4 and 8 -5) into the
center 8 states.

3. Compare these 8 metrics to find the largest through the subtrellis.

4. Determine the corresponding path from the label information.

The first 3 of the functions listed above can be implemented with multiplexors and comparators and

will not be described further in this report. The forth is akin to the trace-back problem in a trellis decoder

and the general approach we developed for this application will be briefly described.

One way this might be accomplished is to store all the label information, determine the most likely

path, then perform the trace-back function. With the large amount of data output from the ACSs, this

would be costly and complicated in terms of the required routing.

The approach we have developed instead sorts the output data in a way that the complete paths into

the states most recently resolved are always organized and available. In this way, the path corresponding to

the winning metric can be obtained simply by multiplexing it out of latches.

The general principle behind this approach will now be described. For simplicity, we will describe a

decoder for a 4-state radix-4 system.

Movement of Data ,,,--IF,-

State Slice

Switch

0

Figure 18 The Decoder front-end contains a switch which de-interleaves the data for decoding of the

most likely path.
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Referto Fig. 19awhichillustratesarandomsetof transitionsthrough4 sectionsof a4-statetrellis
comprisedof radix-4sections.Notethatwhilethereis apossibilityof 16pathsineachsection(4 intoeach
state),theACSunitswill determinethemostlikelypathintoeachstateandthereforethedecodercircuitry
needonlycontendwith4 piecesof dataforeachsection.Our decoder architecture relies heavily upon this
observation.

The basic operation will now be described. At the end of the processing of each section, labels

corresponding to the most likely paths into each of the 4 states are input to the appropriate input location

into the block labelled Latches. The label notation La. x is the label corresponding to the path between State

a and State x. This data is latched and held at the output of the latches at the corresponding state location.

At the end of the next clock cycle, a new set of label data is input to the block labelled Latches and

multiplexing and latching occurs in the blocks that follow. Data is multiplexed in the blocks that follow in

the same manner from input state to output state as the winning paths into the first state of latches. For

example if the winning label into $1 of Section 2 is L2A, then the input from the $2 input of ML1 is

multiplexed to the S 1 output of the ML1 block. This is continued until Section 1 data is at the output of the

block labelled ML3. At that point, each of the $4 outputs contain the labels of the most likely path from

the initial SI state through State 4 in Section 4 starting from ML3 back through to the Latch block while

the $3 outputs contain the labels for the path starting from the initial $I state and ending on the $3 state at

the end of Section 4. The same holds for the $2 and S 1 outputs.

Section 1 $1 Section 2 $1 Section 3 $1 Section 4 $1

(a)

$1

$2

$3

S4

A
v

i

Lb, , ]"_
IT_ 4

IS1 S2 S3S4 I

IIII

$1 Sl

' [ $2' II
II1

1._ MuXeSs_ L_

I
I

(b)

[Ij
Muxes

and
Latches

ML3
' S1 s2 S3 $4
i

o;;
Figure 19 General concept behind the decoder architecture. (a) Example of a 4-state radix-4 trellis

(vs. 8-state radix-8 tbr simplicity). (b) Conceptual block diagram of the decoder hardware.
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Inordertoillustratethismoreclearly,letusworkthroughthedetailedexampleshownin Fig.20.Let
usfocusinparticularonthepathendingin$4attheendof Section4.Thiswill resultin considerationof
onlythedataimpactingthispathforpurposesof thisdiscussion.

Timen Section1isresolvedandthewinninglabelintoS1isL1A.
Thislabelis inputtothelatchonthebuslabelledS1andis latchedandheldonthe
outputbuslabelledSlof theLatchblock.

Timen+l Section2 isresolvedandthewinninglabelinto$3isLt,3.
Thislabelis inputtothelatchonthebuslabelled$3andis latchedandheldonthe
outputbuslabelled$3of theLatchblock.

DataattheS1inputof ML1(labelLl,t) is switchedtooutput$3in accordance
withthiswinninglabelinto$3.

Timen+2 Section3isresolvedandthewinninglabelinto$2isL3,2.
Thislabelis inputtothelatchonthebuslabelled$2andis latchedandheldonthe
outputbuslabelled$2oftheLatchblock.
Dataatthe$3inputofML2 (labelLIA) isswitchedto output$2in accordance
withthiswinninglabelinto$2.
Dataatthe$3inputofML1 (labelL1,3)isswitchedto output$2 inaccordance
withthiswinninglabelinto$2.

Timen+3 Section4 isresolvedandthewinninglabelinto$4is L2,4.
Thislabelis inputtothelatchonthebuslabelled$4andis latchedandheldonthe
outputbuslabelled$4oftheLatchblock.

Dataatthe$2inputof ML3 (labelLt, l) isswitchedtooutput$4 in accordance
withthiswinninglabelinto$4.
Dataatthe$2inputof ML2 (labelL1,3)isswitchedtooutput$2 inaccordance
withthiswinninglabelinto$4.
Dataatthe$2inputof ML1 (labelL3,2)isswitchedtooutput$2 inaccordance
withthiswinninglabelinto$4.

At thispointascanbeseeninFig.20,the$4outputsof eachof theblockscontainlabelsof themost
likely pathinto$4of Section4.Labelscorrespondingto themostlikely pathsintoeachof the4statesat
theendof Section4 will likewisebein thecorrespondingoutputlocationof theblocks.

Theimplementationwill usea bitsliceapproachtoreducerouting.Thisblockis still indesignbut
we believethis approachwill greatlyfacilitate the implementationof thedecoderto achievethe
throughputobjectiveswithinthetargetdieareaconstraints.
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Figure 20 Example illustrating the movement of data within the decoder hardware to develop the

path through the four sections into ,.£4of Section 4,
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4. Summary and Future Work

Research Summary

In the first phase of study, we investigated the complexities of various sectionalized trellis diagrams

for the proposed (64, 40, 8) RM subcode. We found a specific 8-trellis diagram for this code which

requires the least decoding complexity with a high possibility of achieving a decoding speed of 600 M bits

per second (Mbps). In the second phase of study which was carried out through the past year, we

investigated circuit architectures to determine the feasibility of VLSI implementation of a high-speed

Viterbi decoder based on this 8-section trellis diagram. We began to examine specific design and

implementation approaches to implement a fully custom integrated circuit (IC) which will be a key

building block for a decoder system implementation. This examination was performed in order to study

the feasibility of implementing such a decoder at such high speed using primarily CMOS technology.

The results of our feasibility study indicate that it is feasible to implement such an IC meeting the

objectives outlined at the beginning of Section 3 in a somewhat optimum manner assuming the use of a 0.6

_m CMOS process which is currently available to us. In this technology, current data suggests that the 600

Mbits/sec speed should be attainable using 2 parallel decoders (N = 2 in the Section 1 discussion).

The key results upon which we base this conclusion include:

1. Development of the optimum sequence with which sections of the trellis should be

decoded in order to meet the objectives outlined above.

2. Development of an overall chip plan.

3. Circuit design and layout of the ACS unit. This includes scheduling of the data inside

the ACS block which has many considerations and a large amount of data in transit.

4. Scheduling of the inputs and outputs to and from the chip and between the major blocks

of the chip.

5. Die size in this technology may exceed the 10 mm per side target by up to 20% per side.

This target will be easily met in a state-of-the-art technology (0.25 _tm CMOS) which

in principle should allow the 600 Mbits/sec speed to be implemented with N = 1.

6. Preliminary gate level circuit design of over 80% of the major blocks.

Much work still remains in the circuit design, layout, and simulation of the chip. However, we do

believe we have solutions to most of the significant design challenges in the key blocks which include the

branch metric unit, the ACS block, and the decoder.

Fnture Work

We will be continuing the development of a decoder system, focusing our current efforts on

continuing the development of a full custom CMOS IC to implement a subtrellis which will be the key

building block for the system.

The long term goal of this project is to demonstrate performance and implementation advantages of

Reed-Muller codes for very high speed, bandwidth efficient communication.
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